Laccase-Catalyzed Oxidation of Mn in the Presence of Natural Mn Chelators as a Novel Source of Extracellular H2O2 Production and Its Impact on Manganese Peroxidase
نویسندگان
چکیده
A purified and electrophoretically homogeneous blue laccase from the litter-decaying basidiomycete Stropharia rugosoannulata with a molecular mass of approximately 66 kDa oxidized Mn to Mn , as assessed in the presence of the Mn chelators oxalate, malonate, and pyrophosphate. At rate-saturating concentrations (100 mM) of these chelators and at pH 5.0, Mn complexes were produced at 0.15, 0.05, and 0.10 mol/min/mg of protein, respectively. Concomitantly, application of oxalate and malonate, but not pyrophosphate, led to H2O2 formation and tetranitromethane (TNM) reduction indicative for the presence of superoxide anion radical. Employing oxalate, H2O2 production, and TNM reduction significantly exceeded those found for malonate. Evidence is provided that, in the presence of oxalate or malonate, laccase reactions involve enzyme-catalyzed Mn oxidation and abiotic decomposition of these organic chelators by the resulting Mn , which leads to formation of superoxide and its subsequent reduction to H2O2. A partially purified manganese peroxidase (MnP) from the same organism did not produce Mn complexes in assays containing 1 mM Mn and 100 mM oxalate or malonate, but omitting an additional H2O2 source. However, addition of laccase initiated MnP reactions. The results are in support of a physiological role of laccase-catalyzed Mn oxidation in providing H2O2 for extracellular oxidation reactions and demonstrate a novel type of laccase-MnP cooperation relevant to biodegradation of lignin and xenobiotics.
منابع مشابه
Laccase-catalyzed oxidation of Mn(2+) in the presence of natural Mn(3+) chelators as a novel source of extracellular H(2)O(2) production and its impact on manganese peroxidase.
A purified and electrophoretically homogeneous blue laccase from the litter-decaying basidiomycete Stropharia rugosoannulata with a molecular mass of approximately 66 kDa oxidized Mn(2+) to Mn(3+), as assessed in the presence of the Mn chelators oxalate, malonate, and pyrophosphate. At rate-saturating concentrations (100 mM) of these chelators and at pH 5.0, Mn(3+) complexes were produced at 0....
متن کاملInfluence of the Cultivation Conditions on Ligninolytic Enzyme Production in Pleurotus Pulmonarius
The highest level of laccase activity (391 Ul–1), as well as significant Mn-oxidizing peroxidases production, were found in solid-state culture with grapevine sawdust as the carbon source. After purification of extracellular crude enzyme mixture of Pleurotus pulmonarius, grown in the medium with the best carbon source (grapevine sawdust), three peaks of laccase activity were noted. The results ...
متن کاملPeroxynitric Acid: A Convenient Oxygen Source for Oxidation of Organic Compounds Catalyzed by Polyimide-Supported Manganese (III) Tetrakis(4-methoxylphenyl)porphyrin Acetate
In this work, a polyimide (PI) containing triazole units was synthesized using 3,5-diamino-1,2,4-triazole and pyromellitic dianhydride in N-methyl-2-pyrrolidinone. This polymer was used as the support of manganese (III) tetrakis(4-methoxylphenyl)porphyrin acetate to attain a heterogeneous catalyst; namely Mn(T4-OMePP)OAc@PI. The synthesized PI and Mn(T4-OMePP)OAc@PI were characterized by di...
متن کاملManganese Peroxidase-Dependent Oxidation of Glyoxylic and Oxalic Acids Synthesized by Ceriporiopsis subvermispora Produces Extracellular Hydrogen Peroxide.
The ligninolytic system of the basidiomycete Ceriporiopsis subvermispora is composed of manganese peroxidase (MnP) and laccase. In this work, the source of extracellular hydrogen peroxide required for MnP activity was investigated. Our attention was focused on the possibility that hydrogen peroxide might be generated by MnP itself through the oxidation of organic acids secreted by the fungus. B...
متن کاملManganese(I1) Oxidation by Manganese Peroxidase from the Basidiomycete Phanerochaete chrysosporium
Manganese oxidation by manganese peroxidase (MnP) was investigated. Stoichiometric, kinetic, and Mn" binding studies demonstrated that MnP has a single manganese binding site near the heme, and two Mn"' equivalents are formed at the expense of one H202 equivalent. Since each catalytic cycle step is irreversible, the data fit a peroxidase ping-pong mechanism rather than an ordered bi-bi ping...
متن کامل